The art of deep learning (applied to NLP)
نویسنده
چکیده
In many regards, tuning deep-learning networks is still more an art than it is a technique. Choosing the correct hyper-parameters and getting a complex network to learn properly can be daunting to people not well versed in that art. Taking the example of entailment classification, this work will analyze different methods and tools that can be used in order to diagnose learning problems. It will aim at providing an deep understanding of some key hyper-parameters, sketch out their effects and explain how to identify recurrent problems when tuning them.
منابع مشابه
A New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملCancer Hallmark Text Classification Using Convolutional Neural Networks
Methods based on deep learning approaches have recently achieved state-of-the-art performance in a range of machine learning tasks and are increasingly applied to natural language processing (NLP). Despite strong results in various established NLP tasks involving general domain texts, there is only limited work applying these models to biomedical NLP. In this paper, we consider a Convolutional ...
متن کاملRecent Trends in Deep Learning Based Natural Language Processing
Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NL...
متن کاملBioTxtM 2016 Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining
Methods based on deep learning approaches have recently achieved state-of-the-art performance in a range of machine learning tasks and are increasingly applied to natural language processing (NLP). Despite strong results in various established NLP tasks involving general domain texts, there is only limited work applying these models to biomedical NLP. In this paper, we consider a Convolutional ...
متن کامل